
System-Aware Unlearning Algorithms: Use Lesser, Forget Faster
Linda Lu†, Ayush Sekhari‡, Karthik Sridharan†

†Cornell University, ‡Boston University

Primary Contributions

I We present a new definition of unlearning called system-aware

unlearning that takes into account the attacker’s knowledge of

the system post-unlearning.

I Key Idea: By using less information, we expose less information

to a potential attacker, leading to easier unlearning.

I To highlight the power of this viewpoint of unlearning, we show

that selective sampling can be used to design a more efficient

exact unlearning algorithm for classification.

Background

I An unlearning algorithm A(S, U) removes the influence of deleted
individuals U ⊆ S from a model trained on dataset S, |S| = T .

I Motivations for unlearning: privacy, copyright, safety, etc.

I Classification Setting

Definition 1: State-of-System

Let state-of-system IA(S, U) denotes what is stored in the system
by an unlearning algorithm A after initially learning from sample S
and performing an update for unlearning request U .

Motivation: We want to use and store as little information

as possible from the sample – only what is necessary to

build an accurate model.

Traditional Unlearning Definition

Definition 2: (ε, δ)-Unlearning

A is a (ε, δ)-unlearning algorithm if for all S, for all U ⊆ S, for all
measurable sets F ,

Pr(A(S, U) ∈ F) ≤ eε · Pr(A(S \ U, ∅) ∈ F) + δ

and

Pr(A(S \ U, ∅) ∈ F) ≤ eε · Pr(A(S, U) ∈ F) + δ.

I Provides privacy against a worst-case attacker who has knowl-

edge of all the remaining individuals and the unlearned model.

I But very stringent, and has made the development of efficient

unlearning very difficult

I What about other more benign adversaries?

Issue with existing definition: This worst-case attacker is extremely

pessimistic. An attacker can only realistically compromise what is

stored in system after unlearning.

We Propose: System-Aware Unlearning

Definition 3: System-Aware-(ε, δ)-Unlearning

A is a system-aware-(ε, δ)-unlearning algorithm if for all S, there
exists a S′ ⊆ S, such that for all U ⊆ S, for all measurable sets F ,

Pr(IA(S, U) ∈ F) ≤ eε · Pr(IA(S ′ \ U, ∅) ∈ F) + δ

and

Pr(IA(S ′ \ U, ∅) ∈ F) ≤ eε · Pr(IA(S, U) ∈ F) + δ.

Intuition: If there exists a subset S ′ which is a good representative
of S, then S ′ is the sample from the perspective of the attacker who
only knows IA(S ′ \ U, ∅).

Theorem 1: Information Theoretic Privacy Guarantee

Let dataset S and set of deletions U ⊆ S come from a stochastic
process µ. Then, supµ(MI(U ; S ′ \ U)−MI(U ; S \ U)) ≤ 0.

I Since S ′ is fixed before any deletion requests U arrive, S ′\U cannot
leak any more information about U compared to S \ U .

Illustrative Example: Hard Margin SVM

X Deletion
Request

D
ecision Boundary

Original hard-margin SVM model

D
ecision Boundary

Traditional unlearning A(S \ U, ∅)

D
ecision Boundary

State-of-System IA(S, ∅) = support
vectors = S ′

Decision Boundary

System-Aware Unlearning A(S ′ \ U, ∅)

Takeaway: Sample compression is a natural approach for system-
aware unlearning.

Advantages of System-Aware Unlearning
I System-aware unlearning generalizes traditional unlearning.

I Points that are never used in training are deleted for free. This

leads to fast expected deletion time and low memory usage.

I System-aware unlearning leads to provably more efficient algo-

rithms compared to traditional unlearning.

Efficient System-Aware Unlearning via
Selective Sampling

We use selective sampling for sample compression. Let C(S) be the
compression of S. Sample compression C must satisfy

C(C(S) \ U) = C(S) \ U.

Algorithm 1: System-Aware Unlearning

1: Q ← SelectiveSampler(S)
2: Train a model on Q
3: if Q∩ U 6= ∅, for deletion requests U then

4: return model trained on Q \ U
5: else

6: return original model

I We use the BBQSampler (Cesa-Bianchi et al., 2009) for linear
functions and the GeneralBBQSampler (Gentile et al., 2022) for

general function classes for selective sampling.

I Algorithm 1 is not a valid unlearning algorithm under the tradi-
tional unlearning definition.

Theorem 2: System-Aware Unlearning

Algorithm 1 is a system-aware-(0, 0)-unlearning algorithm with S ′ =
Q and state-of-system IA(S, U) = (Q \ U, A(S, U)).

Theorem 3: Memory Complexity and Deletion Capacity (Linear)

The memory required by Algorithm 1 for linear classification is

O(dT κ log T) where 0 < κ < 1 is a parameter of BBQSampler. Al-
gorithm 1 can tolerate K = O

(
γ2·T κ

d log T ·log(1/δ)

)
queried points deletions

under margin γ while maintaining excess risk guarantees.

Theorem 4: Memory Complexity and Deletion Capacity (General)

The memory required is NT = O
(
R(T,δ)·D(F ,S)

γ2

)
under margin γ,

where D(F , S) is an eluder dimension-like quantity from Gentile et
al. 2022. If the regression oracle for F satisfies uniform stability
β, then Algorithm 1 can tolerate K = O

(√
R(T,δ)√

NT ·β(NT)

)
queried point

deletions while maintaining excess risk guarantees, where R(T, δ)
is the convergence rate of the ERM.

Our work gives the first exact unlearning algorithm for linear

classification requiring only sublinear memory.

ICML 2025

